
2026/02/08 16:17 1/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

osFree Boot sequence (Draft II)

Notes:

This document is in development stage. You can send fixes and changes to it.1.
This document uses parts of Multiboot Specification document version 0.6.932.
Here we use Intel notation and not AT&T assembler notation. It seems, we need to check3.
document and in corresponding places fix it. But this is issue mostly for non-PC loaders.

(C) Copyright 2004-2010 osFree project

This document composed by Yuri Prokushev, Valery Sedletski, Sascha Schmidt.

Introduction

The osFree boot sequence does not use a classic solution like GRUB usage (unlike other L4-based
projects). GRUB is a good program, but has some disadvantages. Main of them is, the loader must
know about the file system (FS) structure. This means, to support a new file system, you need (as
user) to update GRUB with a newer version to support the new FS (if any support is presented). As a
developer, you need to add a file system driver to the kernel and to the boot loader. In most cases
this means different architecture, programming style and development environment. We don't want
to update the whole system to support only small advantages (in comparison with whole OS). We
don't want to reinstall or upgrade most system components any time for “mouse pointer with
shadow”. We want to have total cost of ownership at minimal level. As a result we reused the
installable file system (IFS) approach from OS/2. We don't describe internals of MicroFSD and MiniFSD
here because this is the task of an IFS document but not Kernel Loader internals and interfaces.
Background information (Informative)

In this text we will try to discuss some problems about the way osFree must load from disk and the
system initialization. osFree is an OS/2 clone, so it must follow the way of doing things of original
OS/2. Also we must borrow the good ideas from OS/2 Warp Connect PowerPC Edition (aka Workplace
OS), as it was the 1st example of microkernel OS/2, and had some essential features for microkernel
OS/2 system. You can skip this section if you interested only normative part. OS/2 Boot sequence

At the end of POST procedure the ROM BIOS initializes devices and gives control to int 19h interrupt
routine, which loads 1st sector of the 1st boot device (a floppy, HDD or another). If the device was the
HDD, then the Master boot record (MBR) is loaded from the 1st sector. The ROM BIOS loads it at
address 0x7c0:0×0. The MBR has a Non-System Bootstrap (NSB) in it, and the Partition Table (PT).
The NSB code relocates MBR to 0×60:0×0 and loads the bootsector of boot HDD partition at the same
place (0x7c0:0×0) MBR was loaded first. The boot partition is searched in the Partition Table (PT),
which is embedded in the MBR sector at the end of it. The PT contains four partition descriptors, each
of which has an active flag in the 1st byte of descriptor structure. If this byte is equal to 80h, the
partition is active, if it is =00h, then partition is not active. MBR transfers control to the bootsector
and the bootsector loads the operating system. This part of boot sequence is the same in different PC
OSes including Windows, OS/2 and Linux when loading from the active primary partition.

In OS/2, to freely choose operating systems, different from OS/2, IBM included the OS/2 boot
manager. The boot manager is installed in a small primary partition, which is marked active in PT. So,
the MBR sector loads the bootsector of the OS/2 boot manager, instead of the bootsector of a

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

corresponding OS. The boot manager gives a menu to user, from which he or she can choose a
partition to continue booting from. So, the boot manager then loads a bootsector of OS boot partition
at the same address 0x7c0:0×0.

The bootsector has a BPB (Boot Parameters Block) structure in it, which describes some important
parameters, needed to properly boot from the partition. The majority of them is specific for diskettes
and the FAT filesystem, but some are essential for OS/2 to load properly. There are three essential
parameters in the BPB for the OS/2 boot sequence. They are hiddenSectors value, the physical boot
device and the logical boot device. The latter is equivalent to the boot device drive letter and is
important to properly define the drive letter of the boot partition. The physical boot drive is the
number of the boot physical device in the format of BIOS int 13h: the value of 00h is for 1st diskette
drive, 01h for 2nd diskette, 80h for the 1st hard disk, 81h for the 2nd hard disk and so on. The
hiddenSectors is important for booting OS/2 from logical disk in extended partition. For primary
partitions, it is equal to the offset of the partition from the beginning of the HDD, but for logical disks
it is for some reason equal to the number of sectors per track (63 for the modern hard drives). The
hiddenSectors value is used to convert local sector number (from the beginning of the partition) to
the global sector address (from the beginning of the HDD). It is essential for booting OS from the
partition. For this reason, most OSes can load only from primary partition, like Windoze or FreeBSD.
But IBM made OS/2 to be loadable from logical partitions, as well as primary ones. For this, IBM
bootmanager fixes the three above mentioned values in bootsector BPB (previously loaded in
memory), and only after that gives control to the bootsector. (This feature is required from boot
manager to properly load OS/2 from the logical partition. At present, it is available only from three
bootmanagers: IBM Bootmanager, VPart from Veit Kannegieser and AirBoot from Martin Kiewitz.)

After receiving control from MBR code or boot manager, the bootsector loads the so called blackbox
code from the rest of the bootblock (the 15 sectors after the bootsector in HPFS, and 63 sectors in
bootJFS) or from the root directory from os2boot file in FAT. The blackbox is the Micro File System
Driver (MicroFSD or uFSD for short) and contains several functions to open, read and close files from
the root directory of the boot drive. Also it has initialization code and cleanup code. Only one file can
be opened at the same time, and, in IBM blackboxes, only files in the root directory can be read.

The blackbox (aka MicroFSD) in its initialization part, loads two files from disk: os2ldr and os2boot.
(os2boot in FAT contains the MicroFSD, but in other filesystems, it contains the MiniFSD code). The
os2ldr is the OS/2 kernel loader. It is independent from the filesystem, and only for FAT contains a
special code (the above mentioned functions to read files from the FAT partition, and some code to
support memory dumping and hybernating from/to the FAT partition). Besides that, os2ldr
implements DosHlp functions (helpers for the OS/2 kernel), so, it serves like some sort of microkernel
– it implements some functions the kernel depends on. Also, os2ldr contains implementation of the
OEMHLP$ device driver. (Yes, OEMHLP$ resides in the loader!). So, os2ldr is more than just OS loader
:).

The blackbox code transfers control to the os2ldr, and gives it the info about memory layout and
exports its filesystem functions (it gives the loader a FileTable structure, a pointer to the BPB, a
physical boot device and some flags). The loader then relocates itself to the top of low memory, loads
os2krnl from disk and applies required fixups (it does LX format parsing and placing segments to
required places and corrects addresses of functions and variables for proper linkage).

After that, control is given to os2krnl, and memory info along with os2boot MiniFSD image in memory
is given to the kernel by the loader.

For disk reading, os2krnl uses MiniFSD, not MicroFSD. MicroFSD is intended for loader to work in real

2026/02/08 16:17 3/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

mode, and MiniFSD is for the kernel to work in protect mode. MiniFSD has the format of 16-bit NE DLL.
Its size is limited to 62 Kbytes. The system initialization sysinit routine of os2krnl loads MiniFSD from
its in-memory image. It is used at the 1st stage in system initialization process to read config.sys and
load base device drivers (BASEDEV and PSD).

Before the kernel loads OS/2 disk subsystem drivers (they are: ibm1flpy.add, ibm1s506.add, – disk
drivers, an ATAPI filter to support CDROMs, DASD manager (os2dasd.dmd), volume manager
(os2lvm.dmd)), the disk reading is performed by switching to real mode and calling int 13h BIOS disk
read functions. When disk subsystem drivers are loaded and initialized, the kernel uses them to read
the disk, and for filesystem access it continues to use the MiniFSD. It is the 1st phase of the system
initialization process, as it called in ifs.inf documentation from IBM. At this phase the kernel uses
MFS_* MiniFSD functions for filesystem access. They are very similiar to the MicroFSD functions, but
unlike them, they work in protect mode. At the 2nd phase the kernel links MiniFSD into the IFS chain
(it is the only IFS in chain), calls FS_INIT function to complete phase 1 and in phase 2 it uses FS_*
functions from the MiniFSD, so at this moment, MiniFSD is like ordinary IFS, but it supports only a
minimum of FS_* funtions.

After that, phase 3 begins. At this phase, the boot IFS is loaded, which replaces MiniFSD in the IFS
chain. At this stage the kernel calls the MFS_TERM MiniFSD entry point, and the latter transfers control
to the boot IFS. After that a full-featured filesystem access begins. The system now can read from and
write to files from any disk, it supports drive letters and can have many open files at the same time.
At this phase, the kernel can load ordinary device drivers (“device=”) and IFS'es.

After that, the system continue to load “device=” drivers, then process “run=” and “call=”
statements, and then “protshell=” to load pmshell. Some info about OS/2 PPC load process

I have no PowerPC box, but I have IBM's redbook “OS/2 Warp (PowerPC Edition) A first look”, there is a
small paragraph about OS/2 PPC load sequence in this book. This paragraph is very small and
contains only a small piece of information. Also I have OS/2 PPC config files for the loader (boot.cfg)
and for the OS/2 server (config.sys). The most part of drivers, servers and libraries is loaded from
boot.cfg, and the config.sys is specific to the OS/2 personality. The config.sys file is very small.

As written in IBM's redbook, the loader (bl_auto file in the root of the disk) is loaded by the PowerPC
ROM directly from special partition without a filesystem structure; there is no a bootsector, but the
bootloader is just written over this type 0×41 partition. This partition is called “A PowerPC PReP
bootloader partition”. The loader has a configuration file boot.cfg which resides on the boot partition.
(The boot partition is an ordinary primary partition formatted with a FAT filesystem; HPFS support was
too unstable). In the config file, there are the microkernel file, an initial task and other files, which
loader must load from disk into memory. These sevices loaded from boot.cfg are called Personality
neutral (PN) services, they are independent from OS/2 Personality and include device drivers.

The bootloader contains a filesystem support code in it, and SCSI, IDE, floppy, ATAPI extensions to
access corresponding devices through firmware. We can imagine that the firmware contained the
disk-related code, similar to int 13h BIOS routines (but we have no authoritative information sources
which say about that).

The bootloader loads a number of files into memory, then starts the microkernel and the initial task.
The initial task is called the bootstrap. The bootloader passes the bootstrap some information along
with the locations of files it have loaded in memory. The bootstrap acts as a file server for other
servers. In other words, it gives access to the files the bootloader had loaded into memory. The
bootstrap task has no device drivers in it, instead it has access to the files the bootloader has loaded
into memory.

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

Then the bootstrap do the following (I will quote the text from the redbook):

It loads the Root Name Server1.
Starts the default pager2.
Starts the task manager3.
Provides the file services, which will be used by Task Server4.
Directs the Task Manager to start the personality neutral (PN) servers required to bring up the5.
dominant personality. PN servers include Message Logger, Hardware Resource Manager (HRM),
Bus Walkers, and Device Drivers.
Starts the Personality.6.

The bootstrap task continues to behave as a file server until it terminates.

Then OS/2 personality starts. The OS/2 personality server parses config.sys and loads the OS/2
personality specific servers.

Device drivers are not specific to the OS/2 personality, so they are started by bootstrap and are in
bootloader config file (boot.cfg), not in the config.sys file.

L4 microkernel load process. GNU GRUB bootloader and Multiboot specification

The L4 microkernel can be started either in real or protect mode. If started in real mode, it switches to
protect mode by itself. The exact load procedure is described in the L4 API, version X.2 reference
manual.

For loading the L4 microkernel, the GNU GRUB bootloader is commonly used. The GRUB defines the
Multiboot specification, which is intended to be the common protocol between the OS kernel and the
bootloader. Originally, only GRUB supported the multiboot specification, but it is possible to create a
compatible bootloader. For example, there is x.exe the Multiboot compliant DOS extender intended to
start FreeDOS32 from 16-bit DOS. It is multiboot compliant and loads FreeDOS32 which requires a
multiboot compliant loader. It can use x.exe as well as GRUB. The multiboot compliant kernels include
The HURD Mach kernel (The GNU GRUB is the officialGNU project bootloader, and it was created
specifically for the GNU HURD project. But it also suits for Linux, FreeBSD, OpenBSD, NetBSD, MacOS
X and L4). But L4 itself is not a multiboot kernel, instead, it uses its own loader/bootstrapper which in
L4Ka::Pistachio is kickstart, and in L4/Fiasco is rmgr (note: at this time, rmgr is splitted into two parts:
bootstrap loader and the root task).

The Multiboot specification requires from the kernel to have in its first 8192 bytes a structure called
the multiboot header. This header defines requirements for the loader from the kernel, such as: the
load addresses of various segments of a kernel, initial video mode and kernel entry point. The kernel
executable file format may be any, the only requitement is to have the multiboot header. But GRUB
also directly supports the ELF and a.out formats. (But OS/2 (intel) uses LX format, and OS/2 PPC used
ELF format).

The bootloader loads a kernel (kickstart in our case) and a number of additional modules. The
bootloader loads the kernel and applies fixups to it, but modules remain untouched, the loader starts
the kernel and passes to it the pointer to Multiboot structure. The GRUB leaves the kernel in a simple
protected mode environment with paging disabled, A20 line enabled and Interrupt Controller remains
uninitialized. Also, the initial video mode is set.

2026/02/08 16:17 5/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

The Multiboot structure contains info about memory layout and modules. For the kernel and modules
there are strings associated with them. These strings can be used as command lines for kernel and
modules, or just as a labels to identify modules.

In L4Ka:Pistachio, the kickstart bootstrapper plays the role of the multiboot kernel. It receives
Multiboot structure from GRUB, and ELF-loads the L4 kernel and initial servers. Then it searches the
Kernel Interface Page (KIP) inside the L4 image. It passes the multiboot info in Bootinfo structure,
pointed by the field in KIP. Then kickstart fills the fields for initial servers location in the KIP (initial
servers are sigma0 and roottask, which were passed by GRUB as multiboot modules). Then kickstart
calls the entry point in L4 kernel.

In the case of L4/Fiasco the role of kickstart plays the resource manager (rmgr). It consists of two
stages. Stage 1 is analogous to kickstart. It parses the config and loads L4 and servers. Stage 1
passes the configuration to stage 2. Stage 2 is started by L4 and serves as a root server. But at
present, rmgr is divided into 2 parts – bootstrap and roottask, which are loaded as separate multiboot
modules.

Then L4 starts, relocates itself to the proper place in memory, and then starts sigma0 and roottask.
After that, the roottask can initialize the rest of the system.

A historical note about FreeLDR

History of FreeLDR. A note about OS2CSM

OS2CSM idea

Ideas about FreeLdr design

1) First, I suggest to combine the functionality of OS/2 bootmanager and os2ldr in one program. I.e.,
the boot sequence must be like this: The MBR loads an active partition, or the partition with a given
number. (I already wrote such a MBR sector, it can load a bootsector from selected primary or logical
partition (yes, logical partitions are supported too!)). The bootable hard disk number and the number
of partition on it are written inside the MBR of the first hard disk. (The bootable partition can reside on
the same HDD as well as on the different HDD, than the 1st HDD we read MBR from).

So, the MBR loads a boot sector from bootable partition. The boot sector loads the blackbox. The
blackbox loads our loader. Then, the loader starts. The loader combines the functionality of a
bootloader with functionality of bootmanager: after having been called from the blackbox, the loader
shows a menu to the user. The user selects a menu item from it, each menu item defines an OS to be
loaded along with parameters, which are then passed to the OS kernel. From this point, the
loader/bootmanager is capable of executing the bootsectors of OSes, not supported directly by our
loader, like windoze. The loader only loads a corresponding bootsector and executes it. But if an OS
kernel is supported directly, then the loader can also pass some parameters to the kernel, through a
config file or a command line parameters.

The advantage of such an approach is that we can choose an OS and its parameters from the same
place, it is a combined loader/bootmanager. An example: in present OS/2 the OS/2 bootmanager
allows to choose an OS, and os2ldr allows to choose additional parameters – it allows to press a
hotkey to bring up a Recovery choices menu. There are also many other parameters avaliabe by

http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:freeldr:history
http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:freeldr:os2csm

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

pressing Alt-F1[F2,F3,…]. In our case, there is only one menu from which an OS and its parameters
can be choosen, and additional menus, like Recovery choices, are avaliable from the same place: the
bootloader/bootmanager menu. So, the advantage is an integration.

Also, our bootmanager resides on ordinary OS/2 partition, not special bootmanager partition. For
reading files it uses a microfsd. And all settings of the bootmanager/bootloader can be stored in
ordinary text config files.

And finally, our idea of hybrid loader/bootmanager allows us to load different OS/2 kernel versions
from the same partition. And not only kernel, any system component version can be selected from the
same place – they can be selected from within the bootmanager menu.

For more details, read on.

2) The loader present a menu to the user. Each menu item corresponds to the boot script. The script
contains commands to ask additional info from user (i.e., this command shows a menu, user changes
parameters, and parameters are returned to the loader. Then parameters constitute the loader
“environment”. The environment strings can substitute variables in command lines and config files),
to change current partition, to define variables etc. Also the boot script contains definition of files,
loaded by the bootloader. The loader distinguishes between executable files (the loader performs
executable format parsing), files that are only loaded by the loader, but its format is not parsed, and
config files. The files marked as configs are preprocessed by the preprocessor.

So, there are following config files: i) The loader menu definition file, it contains a definition of menu
items. Each menu item has a loader script associated with it. This config file is similar to the menu.lst
file in GRUB. ii) the boot scripts. Each script is referenced or included by menu definition config. Each
script is similar to boot.cfg file in OS/2 PPC. iii) config.sys file. It is specific for OS/2 personality. These
configs are read through microfsd calls and can be preprocessed. There may be additional config files
for individual servers. They also use the loader config preprocessing facilities, so parameters defined
in the loader script or the ones asked from user may substitute variables in these config files. So we
can flexibly set parameters of each system component from the bootmanager menu.

Also, for better flexibility, we can make a small config for the blackbox. When the blackbox is started
by the bootsector, it may read its config file, from which it knows, what files it must load as the
minifsd (it is optional, we may not use minifsd, so it may be not necessary to load it) and freeldr main
module. (See the next paragraph: The idea of modules).

3) The idea of modules.

At present time, the loader is a COM file, so its size is limited to 64 Kb. To include more functionality,
it may be necessary to make it a multi-segment program, so, a better EXE format must be used.
Because it is 16-bit real mode program, the DOS EXE format and, probably, OS/2 NE format are
suitable for that. The DOS EXE format seems to be the most simple, so it is simpler to implement
FreeLdr as a DOS EXE file.

To keep the loader modular (to have possibility to load only needed parts of it, and the possibility to
load/unload parts of it at any time), I suggest to implement it as a set of modules. A module must
work in real mode and can be implemented as a DOS EXE file. (We can't use DLL's in real mode, so we
must design a simple mechanism based on DOS EXE files). I propose a module to be a DOS EXE file
with additional header. The header helps to locate functions inside the EXE file. The header begins
with a pointer to the ASCIIZ string which contains a module name. After this pointer follows a size of
the header, then a size of the DOS executable after the header and then follows a table of structures,

2026/02/08 16:17 7/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

which can be described as:

struct {
 char *FuncName;
 unsigned long EntryPoint;
} *pFuncTable;

i.e., each structure defines a function in EXE file, it links a function name with its offset in the EXE file.
This array of structures is followed by a string table, which contains all the function names and a
module name. Each FuncName pointer points to the sting in this string table. The header helps to
locate each function in the EXE file. The function table can be generated from linker map file.

The main loader module is loaded by microfsd. It has a DOS EXE format, so, to execute it, we must
load it by some executable format loader. The DOS EXE loader can be implemented as a DOS COM
file. I suggest to concatenate the DOS EXE loader with the FreeLdr main module (the main module is
glued to the tail of the EXE loader, this idea is borrowed from the MS NTLDR: the NTLDR consists of
the startup COM file glued with the PE format executable). The FreeLdr startup receives info from the
blackbox, loads and relocates the main module from its tail, executes and passes it an info received
from the blackbox.

The main module contains a mechanism to load other modules from files on disk. It loads a module as
a DOS EXE file, and links its header to the headers list. When performing relocations to the module,
the DOS EXE format loader corrects the addresses in headers, which are linked to the list. From this
list, the main module can locate any function from any module. For that purpose, the main module
supplies a function to be called from other modules. This function takes a module name and a name
of a function in it as parameters, and returns an entry point to this function. This way, any module can
find an entry point to any function with given name in any other module with given name. So, we
have a kind of name service, which can convert a function name to its address. Any module can call
any function in another module.

The microfsd's, loaders for different file formats (DOS EXE, NE, LX, ELF), config file preprocessor etc.
can be implemented as separate modules.

4) We can implement additional executable formats loaders for formats, other than ELF. (For example,
LX, NE, PE(?)…). They can be implemented as separate modules

5) To be possible to read files from other partition than a boot one, it is possible to implement a
blackbox switching. For that, the loader can have a command, executed from the boot script, to
change the current drive, like “root” command in GRUB. For this, the loader loads a new microfsd for
the changed partition filesystem. It updates the FileTable structure by pointers to functions in the new
microfsd. It also loads BPB from the new partition bootsector (and patches the HiddenSectors value, if
needed). So, this feature can give the loader possibility to read files from several partitions, switching
them.

6) I propose to make the loader capable of loading standard multiboot kernels, L4 kernel (as a kind of
a multiboot kernel), and custom kernels, like OS/2 kernel. Before, in this text the idea of modules was
described. The idea is to implement a loader as a set of loadable modules. Custom OS kernels, not
compatible with multiboot specification, can be supported by custom loader module. The multiboot
support can also be implemented as a separate module. The module is loaded by the Freeldr main
module. By writing support module for custom kernel type, the developers from outside can extend
our loader to load their kernels. There may be, our loader will suit not only unix or OS/2 or L4 kernels,
but windoze and ReactOS kernels too. We can't expect uncle Billy to make support for loading

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

windoze kernel from our loader, but it is possible that ReactOS guys can make their kernel loadable

from it. The part of the loader loaded by the blackbox is called the general part of the loader.
The general part contains only support functions for loading modules, locating functions in them, the
DOS EXE format loader, and some more functions. It passes control to the custom part along with
interfaces to module loader, microfsd's, and the info obtained from the blackbox of a bootable
partition. The custom loader part implements support for loading specific kind of kernel.

a) For loading multiboot kernels, the multiboot specific part of a loader can be implemented as a
separate module. Through it, we can load L4 kernel, as well as most unix kernels.

b) For loading ordinary OS/2 kernels, there must be a specific custom part. This custom part takes
from general part the info, obtained from the blackbox. It loads os2ldr file from disk and passes this
info to os2ldr. Then the boot process continues as usual. In future, the custom part can be extended,
so it will fully replace os2ldr functionality as David Zimmerli wanted – his idea was exactly to replace
os2ldr functionality. c)

For loading unsupported kernels, the loader can only load corresponding OS bootsector, and give
control to it. It may be implemented like GRUB “chainloader” command. Suggested boot sequence

1) Do we need a MiniFSD?

If we look at the OS/2 PPC and L4 boot sequence, we may conclude that OS/2 PPC bootloader and
GRUB do similar things. They load a kernel and a set of files into memory and start the kernel. Then
the bootstrap task, in 1st case, and a root task in 2nd case, will start other tasks; the FreeLdr also
must do equivalent tasks. As at this moment the filesystem is not yet initialized, the bootstrap or root
task can only access files that were already loaded by the bootloader.

To use a filesystem, we must first load the disk driver (ibm1s506.add or ibm1flpy.add), dasd manager,
volume manager and filesystem driver (or their equivalents in our microkernel system). Let assume
that we can use a minifsd as a filesystem driver. With L4, we can't use 16-bit programs as easy as in
present OS/2. So, our minifsd must be 32-bit. And 62 Kb limit for its size is not applicable here, as we
use 32-bit programs.

As written in ifs.inf file from IBM, a minifsd has two modes of operation – at phase 1 and at phase 2 of
boot process. Before phase 1, when minifsd initializes, it can not call any dynalink calls (in MFS_INIT
initialization routine). Ordinary IFS in its FS_INIT routine, can call external dlls. The only external
functions a minifsd can call are MFSH_* helpers called from the kernel. The full-featured IFS's can call
a much wider number of external calls. They are FSH_* IFS helpers. (but, as I understood, the IFS can't
call other external functions, besides FSH_* calls in routines other than its FS_INIT routine). For the IFS
to be possible to call external DLLs at IFS init time, the dynamic loading support must be working and
operational, and the DLLs itself must be available. They can be only loaded by minifsd (because IFS is
not initialized yet) or they may be passed by the bootloader.

The reason why minifsd is used by the OS/2 (intel) boot process is to have a limited filesystem access
after the kernel switched into protected mode. Before the OS/2 disk subsystem drivers are loaded, the
disk read is performed by temporarily switching into real mode and calling int 13h disk read functions.
After the disk subsystem is loaded, the disk read is performed through OS/2 disk driver.

In L4 or in OS/2 PPC, before disk drivers are loaded, we can't switch to real mode to call int 13
routines. Consequently, the disk drivers must be read through the microfsd by the bootloader, and
then they must be passed to roottask through memory. So, the disk drivers can be started from their

2026/02/08 16:17 9/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

memory images by the roottask.

But then why we must use a minifsd? We can load the full-featured boot IFS immediately, and before
that, we can start ELF format dynamic loader support servers and load all the DLLs boot IFS needs. All
these files can be passed by the bootloader along with disk subsystem drivers.

So, it has not much sense to use minifsd in L4 boot sequence, only microfsd is needed. And if we look
at OS/2 PPC, then we will see that it has not a minifsd and basedev's loading phase. Instead, all
required services are passed to the bootstrap task by the bootloader. In our case, FreeLdr and
kickstart play the role of OS/2 PPC bootloader, and roottask is analogous to the bootstrap task. So, we
must to make similar design solutions.

2) In case of loading L4, the loader loads kickstart L4 bootstrapper. Kickstart is given a set of modules
by the bootloader through the multiboot structure. The kickstart then passes this info in bootinfo
structure, pointed by the field in KIP. When L4 is started, it starts sigma0 and roottask. The roottask
can obtain info from bootinfo structure, which can be reached from the KIP. The KIP address can be
obtained through the KernelInterface() L4 system call. So, the roottask can obtain info about modules,
passed by kickstart. Then the roottask can find the needed modules in the bootinfo structure. The
purpose of each module can be defined through strings associated with modules, each module can be
marked by special tag, which defines its purpose (e.g., the module contains a library, a config, a root
name server, an executable files loader server. etc.). The tag can be contained in string along with
command line for this module. This way, an info about modules is passed from loader through
kickstart to roottask, and roottask can find needed servers and load them in proper order. By that, the
roottask can implement a funcionality of OS/2 PPC bootstrap task. The roottask first starts the
personality neutral (PN) services, then brings up the OS personalities (OS/2, L4Linux, etc.). Overview
of osFree boot sequence (Normative)

When the computer is turned on or reseted, the first program to be executed is the BIOS. There are
different BIOSes with different execution sequence. We only have to know one thing: The BIOS
(Standard, BOOTrom, PXE-BIOS or something else) loads the boot sector (under term 'boot sector' we
understand not only actual harddisk boot sector or PXE boot image, but any first code which is loaded
by the hardware and executed) and passes control to it.

And here our boot sequence starts. We name all code executed before our boot sector as BlackBox.
We don't know how it works. We only know we have control passed to our code. Our boot sector is
storage depended 16-bit code. The boot sector loads a first stage loader named MicroFSD, MiniFSD
and Kernel Loader. MicroFSD is Micro File System Driver. MiniFSD is Mini File System Driver. Kernel
Loader is code which loads and executes the osFree kernel (or any multiboot compatible kernel, if
user prefers).

The code in the boot sector fills information structures and passes them to the Kernel Loader. Those
Information structures contain information about the current memory allocation and MicroFSD entry
points.

The Kernel Loader is 16-bit/32-bit mixed code. It loads a multiboot-compatible kernel image,
reallocates it and MiniFSD in memory, links entry points, switches the CPU to protected mode and
passes control to the Kernel. Kernel and MiniFSD are not 16-bit code but 32-bit. Data types and
constants

In folowing description of interfaces we use common way of types definition. Here table with types
desctiprion:

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

Type Base type Description
USHORT16 unsigned short int 16-bit unsigned short integer
ULONG32 unsigned long int 32-bit unsigned long integer

MicroFSD/KernelLoader interface (Normative)

The MicroFSD/KernelLoader interface is the same as for OS/2. After MicroFSD has loaded all required
code (MiniFSD image, OS2LDR image), it passes control to KernelLoader (OS2LDR). The CPU must be
in real mode and the CPU registers must be filled like in the following table.

When initially transferring control to OS2LDR from a “black box”, the following interface is defined:

Register Contains Description

DH Boot mode flags Provides information about current state
of boot process

DL
Boot disk drive number This parameter is
ignored if either the BBF_NOVOLIO or
BBF_MINIFSD flags are not set.

DS:SI Pointer to the BOOT Media's BPB
This parameter is ignored if either the
BBF_NOVOLIO or BBF_MINIFSD flags are
not set.

ES:DI Pointer to a Memory map structure

Boot mode flags are folowing:

Constant name Constant value Description
BBF_NOVOLIO 0×01 indicates that the miniFSD does not use MFSH_DOVOLIO
BBF_RIPL 0×02 indicates that boot volume is not local (RIPL boot)
BBF_MINIFSD 0×04 indicates that a miniFSD ispresent.
BBF_RESERVED1 0×08 must be zero.
BBF_MICROFSD 0×10 indicates that a microFSD is present.
BBF_RESERVED2 0×20 must be zero.
BBF_RESERVED3 0×40 must be zero.
BBF_RESERVED4 0×80 must be zero.

struct MemoryMap
{
 USHORT16 mmt_centries; /* # of entries in this table
*/
 USHORT16 mmt_ldrseg; /* paragraph # where OS2LDR is loaded */
 ULONG32 mmt_ldrlen; /* length of OS2LDR in bytes
*/
 USHORT16 mmt_museg; /* paragraph # where microFSD is loaded */
 ULONG32 mmt_mulen; /* length of microFSD in bytes
*/
 USHORT16 mmt_mfsseg; /* paragraph # where miniFSD is loaded */
 ULONG32 mmt_mfslen; /* length of miniFSD in bytes
*/
 USHORT16 mmt_ripseg; /* paragraph # where RIPL data is loaded */

2026/02/08 16:17 11/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

 ULONG32 mmt_riplen; /* length of RIPL data in bytes.
*/
 /* The next four elements are pointers to microFSD entry points
*/
 USHORT16 (far *mmt_muOpen)(char far *pName, unsigned long far
*pulFileSize);
 ULONG32 (far *mmt_muRead)(long loffseek, char far *pBuf, unsigned long
cbBuf);
 ULONG32 (far *mmt_muClose)(void);
 ULONG32 (far *mmt_muTerminate)(void);
}

The microFSD entry points interface is defined as follows:

mu_Open is passed a far pointer to the name of the file to be opened and a far pointer to a
ULONG to return the file size. The re-turned value (in AX) indicates success(0) or failure (non-0).
mu_Read is passed a seek offset, a far pointer to a data buffer, and the size of the data buffer.
The returned value(in DX:AX) indicates the number of bytes actually read.
mu_Close has no parameters and expects no return value. It is a signal to the micro-FSD that
the loader is done reading the current file.
mu_Terminate has no parameters and expects no return value. It is a signal to the micro-FSD
that the loader has finished reading the boot drive.

The loader will call the microFSD in a Open-Read-Read-….-Read-Close sequence for each file read in
from the boot drive. After all files are loaded, mu_Terminate must be called.

KernelLoader/Kernel interface (Normative)

The KernelLoader/Kernel interface is not OS/2 compatible but multiboot compatible. This means you
can load different kernels, for example a Linux kernel.

There are three main aspects of a Kernel loader/Kernel image interface:

The format of an Kernel image as seen by a Kernel loader.
The state of a machine when a Kernel loader starts an operating system.
The format of information passed by a Kernel loader to an operating system.

Kernel image format

A Kernel image may be an ordinary 32-bit executable file in the standard format for that particular
operating system, except that it may be linked at a non-default load address to avoid loading on top
of the PC's I/O region or other reserved areas, and of course it should not use shared libraries or other
fancy features.

A Kernel image must contain an additional header, called Multiboot header, besides the headers of
the format used by the Kernel image. The Multiboot header must be contained completely within the
first 8192 bytes of the Kernel image, and must be longword (32-bit) aligned. In general, it should
come as early as possible and may be embedded in the beginning of the text segment after the real
executable header. The layout of the Multiboot header

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

The layout of the Multiboot header must be as follows:

Offset Type Field Name Note
0 ULONG32 Magic required
4 ULONG32 Flags required
8 ULONG32 checksum required
12 ULONG32 header_addr if flags[16] is set
16 ULONG32 load_addr if flags[16] is set
20 ULONG32 load_end_addr if flags[16] is set
24 ULONG32 bss_end_addr if flags[16] is set
28 ULONG32 entry_addr if flags[16] is set
32 ULONG32 mode_type must be ignored
36 ULONG32 width must be ignored
40 ULONG32 height must be ignored
44 ULONG32 depth must be ignored

The fields magic, flags and checksum are defined in Header magic fields, the fields header_addr,
load_addr, load_end_addr, bss_end_addr and entry_addr are defined in Header address fields, and the
fields mode_type, width, height and depth are defind in Header graphics fields. Because we consider
Kernel loader only must load and execute kernel Header graphics fields ignored by Kernel loader.

magic

The field magic is the magic number identifying the header, which must be the hexadecimal value
0x1BADB002 refered as MULTIBOOT_MAGIC constant.

flags

The field flags specifies features that the Kernel image requests or requires of an Kernel loader. Bits
0-15 indicate requirements; if the kernel loader sees any of these bits set but doesn't understand the
flag or can't fulfill the requirements it indicates for some reason, it must notify the user and fail to
load the Kernel image. Bits 16-31 indicate optional features; if any bits in this range are set but the
kernel loader doesn't understand them, it may simply ignore them and proceed as usual. Naturally, all
as-yet-undefined bits in the flags word must be set to zero in Kernel images. This way, the flags fields
serves for version control as well as simple feature selection.

If bit 0 (defined by MULTIBOOT_PAGE_ALIGN constant) in the flags word is set, then all boot modules
loaded along with the operating system must be aligned on page (4KB) boundaries. Some operating
systems expect to be able to map the pages containing boot modules directly into a paged address
space during startup, and thus need the boot modules to be page-aligned.

If bit 1 (defined by MULTIBOOT_MEMORY_INFO constant) in the flags word is set, then information on
available memory via at least the mem_* fields of the Multiboot information structure (see Boot
information format) must be included. If the kernel loader is capable of passing a memory map (the
mmap_* fields) and one exists, then it may be included as well.

If bit 2 (defined by MULTIBOOT_VIDEO_MODE constant) in the flags word set then loading of the

2026/02/08 16:17 13/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

Kernel must be stoped. This is because we don't support this feature. Most possible in future we will
just tell to the Kernel standard video mode info.

If bit 16 (defined by MULTIBOOT_AOUT_KLUDGE constant) in the flags word is set, then the fields at
offsets 8-24 in the Multiboot header are valid, and the kernel loader should use them instead of the
fields in the actual executable header to calculate where to load the Kernel image. This information
does not need to be provided if the kernel image is in ELF format, but it must be provided if the image
is in a.out format or in some other format. Compliant kernel loaders must be able to load images that
either are in ELF format or contain the load address information embedded in the Multiboot header;
they may also directly support other executable formats, such as particular a.out variants, but are not
required to.

checksum

The field checksum is a 32-bit unsigned value which, when added to the other magic fields (i.e. magic
and flags), must have a 32-bit unsigned sum of zero.

The address fields of Multiboot header

All of the address fields enabled by flag bit 16 (MULTIBOOT_AOUT_KLUDGE) are physical addresses.
The meaning of each is as follows:

header_addr

Contains the address corresponding to the beginning of the Multiboot header – the physical memory
location at which the magic value is supposed to be loaded. This field serves to synchronize the
mapping between Kernel image offsets and physical memory addresses.

load_addr

Contains the physical address of the beginning of the text segment. The offset in the Kernel image file
at which to start loading is defined by the offset at which the header was found, minus (header_addr -
load_addr). load_addr must be less than or equal to header_addr.

load_end_addr

Contains the physical address of the end of the data segment. (load_end_addr - load_addr) specifies
how much data to load. This implies that the text and data segments must be consecutive in the
Kernel image; this is true for existing a.out executable formats. If this field is zero, the kernel loader
assumes that the text and data segments occupy the whole Kernel image file.

bss_end_addr

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

Contains the physical address of the end of the bss segment. The kernel loader initializes this area to
zero, and reserves the memory it occupies to avoid placing boot modules and other data relevant to
the operating system in that area. If this field is zero, the kernel loader assumes that no bss segment
is present.

entry_addr

The physical address to which the kernel loader should jump in order to start running the operating
system.

Machine state

When the kernel loader invokes the 32-bit operating system, the machine must have the following
state:

Registers Contains Description

EAX Magic value

Must contain the magic value 0x2BADB002; the presence of this
value indicates to the operating system that it was loaded by a
Multiboot-compliant kernel loader (e.g. as opposed to another
type of kernel loader that the operating system can also be
loaded from).

EBX
Pointer to
Multiboot
information
structure

Must contain the 32-bit physical address of the Multiboot
information structure provided by the kernel loader (see Boot
information format).

CS Code segment Must be a 32-bit read/execute code segment with an offset of 0
and a limit of 0xFFFFFFFF. The exact value is undefined.

DS/ES/FS/GS/SS Data segment Must be 32-bit read/write data segments with an offset of 0 and a
limit of 0xFFFFFFFF. The exact values are all undefined.

Also:

A20 gate Must be enabled.
CR0 Bit 31 (PG) must be cleared. Bit 0 (PE) must be set. Other bits are all undefined.
EFLAGS Bit 17 (VM) must be cleared. Bit 9 (IF) must be cleared. Other bits are all undefined.

All other processor registers and flag bits are undefined. This includes, in particular:

ESP The Kernel image must create its own stack as soon as it needs one.
GDTR Even though the segment registers are set up as described above, the GDTR may be
invalid, so the Kernel image must not load any segment registers (even just reloading the same
values!) until it sets up its own GDT.
IDTR The Kernel image must leave interrupts disabled until it sets up its own IDT.

However, besides this the machine state should be left by the kernel loader in normal working order,
i.e. as initialized by the BIOS (or DOS, if that's what the kernel loader runs from). In other words, the
operating system should be able to make BIOS calls and such after being loaded, as long as it does
not overwrite the BIOS data structures before doing so. Also, the kernel loader must leave the PIC
programmed with the normal BIOS/DOS values, even if it changed them during the switch to 32-bit

2026/02/08 16:17 15/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

mode.

Boot information format

Upon entry to the operating system, the EBX register contains the physical address of a Multiboot
information data structure, through which the kernel loader communicates vital information to the
operating system. The operating system can use or ignore any parts of the structure as it chooses; all
information passed by the kernel loader is advisory only.

The Multiboot information structure and its related substructures may be placed anywhere in memory
by the kernel loader (with the exception of the memory reserved for the kernel and boot modules, of
course). It is the operating system's responsibility to avoid overwriting this memory until it is done
using it.

The format of the Multiboot information structure (as defined so far) follows:

Offset Type Field Name Note
0 ULONG32 Flags (required)
4 ULONG32 mem_lower (present if flags[0] is set)
8 ULONG32 mem_upper (present if flags[0] is set)
12 ULONG32 boot_device (present if flags[1] is set)
16 ULONG32 Cmdline (present if flags[2] is set)
20 ULONG32 mods_count (present if flags[3] is set)
24 ULONG32 mods_addr (present if flags[3] is set)
28 - 40 ULONG32 syms (present if flags[4] or flags[5] is set)
44 ULONG32 mmap_length (present if flags[6] is set)
48 ULONG32 mmap_addr (present if flags[6] is set)
52 ULONG32 drives_length (present if flags[7] is set)
56 ULONG32 drives_addr (present if flags[7] is set)
60 ULONG32 config_table (present if flags[8] is set)
64 ULONG32 boot_loader_name (present if flags[9] is set)
68 ULONG32 apm_table (present if flags[10] is set)
72 ULONG32 vbe_control_info (must be filled by)
76 ULONG32 vbe_mode_info
80 ULONG32 vbe_mode
82 ULONG32 vbe_interface_seg
84 ULONG32 vbe_interface_off
86 ULONG32 vbe_interface_len

The first longword indicates the presence and validity of other fields in the Multiboot information
structure. All as-yet-undefined bits must be set to zero by the kernel loader. Any set bits which the
operating system does not understand should be ignored. Thus, the flags field also functions as a
version indicator, allowing the Multiboot information structure to be expanded in the future without
breaking anything.

If bit 0 in the flags word is set, then the mem_* fields are valid. mem_lower and mem_upper indicate
the amount of lower and upper memory, respectively, in kilobytes. Lower memory starts at address 0,
and upper memory starts at address 1 megabyte. The maximum possible value for lower memory is

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

640 kilobytes. The value returned for upper memory is maximally the address of the first upper
memory hole minus 1 megabyte. It is not guaranteed to be this value.

If bit 1 in the flags word is set, then the boot_device field is valid, and indicates which BIOS disk
device the kernel loader loaded the Kernel image from. If the Kernel image was not loaded from a
BIOS disk, then this field must not be present (bit 3 must be clear). The operating system may use
this field as a hint for determining its own root device, but is not required to. The boot_device field is
laid out in four one-byte subfields as follows:

Drive part1 part2 part3

The first byte contains the BIOS drive number as understood by the BIOS INT 0×13 low-level disk
interface: e.g. 0×00 for the first floppy disk or 0×80 for the first hard disk.

The three remaining bytes specify the boot partition. part1 specifies the top-level partition number,
part2 specifies a sub-partition in the top-level partition, etc. Partition numbers always start from zero.
Unused partition bytes must be set to 0xFF. For example, if the disk is partitioned using a simple one-
level DOS partitioning scheme, then part1 contains the DOS partition number, and part2 and part3
are both 0xFF. As another example, if a disk is partitioned first into DOS partitions, and then one of
those DOS partitions is subdivided into several BSD partitions using BSD's disklabel strategy, then
part1 contains the DOS partition number, part2 contains the BSD sub-partition within that DOS
partition, and part3 is 0xFF.

DOS extended partitions are indicated as partition numbers starting from 4 and increasing, rather
than as nested sub-partitions, even though the underlying disk layout of extended partitions is
hierarchical in nature. For example, if the kernel loader boots from the second extended partition on a
disk partitioned in conventional DOS style, then part1 will be 5, and part2 and part3 will both be 0xFF.

If bit 2 of the flags longword is set, the cmdline field is valid, and contains the physical address of the
command line to be passed to the kernel. The command line is a normal C-style zero-terminated
string.

If bit 3 of the flags is set, then the mods fields indicate to the kernel what boot modules were loaded
along with the kernel image, and where they can be found. mods_count contains the number of
modules loaded; mods_addr contains the physical address of the first module structure. mods_count
may be zero, indicating no boot modules were loaded, even if bit 1 of flags is set. Each module
structure is formatted as follows:

Offset Type Field Name Note
0 ULONG32 mod_start
4 ULONG32 mod_end
8 ULONG32 String
12 ULONG32 reserved(0)

The first two fields contain the start and end addresses of the boot module itself. The string field
provides an arbitrary string to be associated with that particular boot module; it is a zero-terminated
ASCII string, just like the kernel command line. The string field may be 0 if there is no string
associated with the module. Typically the string might be a command line (e.g. if the operating
system treats boot modules as executable programs), or a pathname (e.g. if the operating system
treats boot modules as files in a file system), but its exact use is specific to the operating system. The
reserved field must be set to 0 by the kernel loader and ignored by the operating system.

2026/02/08 16:17 17/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

Caution: Bits 4 & 5 are mutually exclusive.

If bit 4 in the flags word is set, then the following fields in the Multiboot information structure starting
at byte 28 are valid:

Offset Type Field Name Note
28 ULONG32 Tabsize
32 ULONG32 Strsize
36 ULONG32 Addr
40 ULONG32 reserved (0)

These indicate where the symbol table from an a.out kernel image can be found. addr is the physical
address of the size (4-byte unsigned long) of an array of a.out format nlist structures, followed
immediately by the array itself, then the size (4-byte unsigned long) of a set of zero-terminated ASCII
strings (plus sizeof(unsigned long) in this case), and finally the set of strings itself. tabsize is equal to
its size parameter (found at the beginning of the symbol section), and strsize is equal to its size
parameter (found at the beginning of the string section) of the following string table to which the
symbol table refers. Note that tabsize may be 0, indicating no symbols, even if bit 4 in the flags word
is set.

If bit 5 in the flags word is set, then the following fields in the Multiboot information structure starting
at byte 28 are valid:

Offset Type Field Name Note
28 ULONG32 Num
32 ULONG32 Size
36 ULONG32 Addr
40 ULONG32 Shndx

These indicate where the section header table from an ELF kernel is, the size of each entry, number of
entries, and the string table used as the index of names. They correspond to the shdr_* entries
(shdr_num, etc.) in the Executable and Linkable Format (ELF) specification in the program header. All
sections are loaded, and the physical address fields of the ELF section header then refer to where the
sections are in memory (refer to the i386 ELF documentation for details as to how to read the section
header(s)). Note that shdr_num may be 0, indicating no symbols, even if bit 5 in the flags word is set.

If bit 6 in the flags word is set, then the mmap_* fields are valid, and indicate the address and length
of a buffer containing a memory map of the machine provided by the BIOS. mmap_addr is the
address, and mmap_length is the total size of the buffer. The buffer consists of one or more of the
following size/structure pairs (size is really used for skipping to the next pair):

Offset Type Field Name Note
-4 ULONG32 Size
0 ULONG32 base_addr_low
4 ULONG32 base_addr_high
8 ULONG32 length_low
12 ULONG32 length_high
16 ULONG32 Type

where size is the size of the associated structure in bytes, which can be greater than the minimum of

Last update: 2014/05/21
23:28 en:docs:boot:bootseq2 http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

http://cocorico.osfree.org/doku/ Printed on 2026/02/08 16:17

20 bytes. base_addr_low is the lower 32 bits of the starting address, and base_addr_high is the upper
32 bits, for a total of a 64-bit starting address. length_low is the lower 32 bits of the size of the
memory region in bytes, and length_high is the upper 32 bits, for a total of a 64-bit length. type is the
variety of address range represented, where a value of 1 indicates available RAM, and all other values
currently indicated a reserved area.

The map provided is guaranteed to list all standard RAM that should be available for normal use.

If bit 7 in the flags is set, then the drives_* fields are valid, and indicate the address of the physical
address of the first drive structure and the size of drive structures. drives_addr is the address, and
drives_length is the total size of drive structures. Note that drives_length may be zero. Each drive
structure is formated as follows:

Offset Type Field Name Note
0 ULONG32 Size
4 BYTE drive_number
5 BYTE drive_mode
6 USHORT16 drive_cylinders
8 BYTE drive_heads
9 BYTE drive_sectors
10-xx drive_ports

The size field specifies the size of this structure. The size varies, depending on the number of ports.
Note that the size may not be equal to (10 + 2 * the number of ports), because of an alignment.

The drive_number field contains the BIOS drive number. The drive_mode field represents the access
mode used by the kernel loader. Currently, the following modes are defined:

0 - CHS mode (traditional cylinder/head/sector addressing mode)
1 - LBA mode (Logical Block Addressing mode)

The three fields, drive_cylinders, drive_heads and drive_sectors, indicate the geometry of the drive
detected by the BIOS. drive_cylinders contains the number of the cylinders. drive_heads contains the
number of the heads. drive_sectors contains the number of the sectors per track.

The drive_ports field contains the array of the I/O ports used for the drive in the BIOS code. The array
consists of zero or more unsigned two-bytes integers, and is terminated with zero. Note that the array
may contain any number of I/O ports that are not related to the drive actually (such as DMA
controller's ports).

If bit 8 in the flags is set, then the config_table field is valid and indicates the address of the ROM
configuration table returned by the GET CONFIGURATION BIOS call. If the BIOS call fails, then the size
of the table must be zero.

If bit 9 in the flags is set, the boot_loader_name field is valid, and contains the physical address of the
name of a kernel loader booting the kernel. The name is a normal C-style zero-terminated string.

If bit 10 in the flags is set, the apm_table field is valid, and contains the physical address of an APM
table defined as below:

2026/02/08 16:17 19/19 osFree Boot sequence (Draft II)

osFree wiki - http://cocorico.osfree.org/doku/

Offset Type Field Name Note
0 USHORT16 version
2 USHORT16 cseg
4 USHORT16 Offset
8 USHORT16 cseg_16
10 USHORT16 Dseg
12 USHORT16 Flags
14 USHORT16 cseg_len
16 USHORT16 cseg_16_len
18 USHORT16 dseg_len

The fields version, cseg, offset, cseg_16, dseg, flags, cseg_len, cseg_16_len, dseg_len indicate the
version number, the protected mode 32-bit code segment, the offset of the entry point, the protected
mode 16-bit code segment, the protected mode 16-bit data segment, the flags, the length of the
protected mode 32-bit code segment, the length of the protected mode 16-bit code segment, and the
length of the protected mode 16-bit data segment, respectively. Only the field offset is 4 bytes, and
the others are 2 bytes. See Advanced Power Management (APM) BIOS Interface Specification, for
more information.

The bit 11 in the flags must be zero. For Installable File System drivers developers

Installable File System (IFS) drivers are described in the IFS document. Kernel Loader internals

The Kernel Loader is raw 16-bit/32-bit binary code (like MS/PC-DOS COM files, but started not from
100h but from 0h).

First of all, Kernel Loader stores all information from CPU registers into internal structures
Depending on this information stores info about memory allocation
After this it show information on display
Loads kernel
Swtiches to protected mode
And executes multiboot compatible Kernel

Nothing more here! Wasn't it easy?

From:
http://cocorico.osfree.org/doku/ - osFree wiki

Permanent link:
http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

Last update: 2014/05/21 23:28

http://cocorico.osfree.org/doku/
http://cocorico.osfree.org/doku/doku.php?id=en:docs:boot:bootseq2&rev=1400714898

	[osFree Boot sequence (Draft II)]
	osFree Boot sequence (Draft II)
	Notes:
	Introduction
	L4 microkernel load process. GNU GRUB bootloader and Multiboot specification

	History of FreeLDR. A note about OS2CSM
	Ideas about FreeLdr design
	MicroFSD/KernelLoader interface (Normative)
	KernelLoader/Kernel interface (Normative)
	Kernel image format
	magic
	flags
	checksum

	The address fields of Multiboot header
	header_addr
	load_addr
	load_end_addr
	bss_end_addr
	entry_addr

	Machine state
	Boot information format

