2026/02/05 11:05 1/3 DosGetPID

This call returns the current process ID, thread ID, and the process ID of the parent process.

Syntax

DosGetPID (ProcessIDs)

Parameters

;ProcessIDs (PPIDINFO) - output : Address of the structure where the ID information is returned. ::pid
(PID) : Current process identifier. ::tid (TID) : Thread (of the current process) identifier. ::pidParent
(PID) : Parent process (of the current process) identifier.

Return Code

;rc (USHORT) - return:Return code description is: *0 NO_ERROR

Remarks
The process ID may be used to generate uniquely named temporary files, or for communication with
signals. For more information on signals, see DosFlagProcess and DosSendSignal.

In the 0S/2 environment, thread IDs are used with calls that manipulate threads in the current
process. For more information, see DosSuspendThread, DosResumeThread, DosGetPrty, and
DosSetPrty.

If the application is executing in the 0S/2 environment, it is more efficient to obtain these variables by
calling DosGetInfoSeg instead of DosGetPID. However, applications written to the family API cannot
depend on the availability of DosGetInfoSeg.

To get an ID for a process other than the current process or its parent process, issue DosGetPPID.

Bindings

MASM

<PRE> PIDINFO struc

pidi pid dw ? ;current process' process ID
pidi_ tid dw ? ;current process' thread ID
pidi pidParent dw ? ;process ID of the parent

PIDINFO ends

EXTRN DosGetPID:FAR INCL_DOSPROCESS EQU 1

osFree wiki - http://cocorico.osfree.org/doku/

http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dossuspendthread
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosresumethread
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetprty
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dossetprty
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetppid

Last update: 2021/09/19
05:48

PUSH®@ OTHER ProcessIDsArea ;Process IDs (returned) CALL DosGetPID

en:docs:fapi:dosgetpid http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetpid&rev=1632030507

Returns NONE </PRE>

<PRE> typedef struct PIDINFO { /* pidi */

PID pid; /* current process' process ID */
TID tid; /* current process' thread ID */
PID pidParent; /* process ID of the parent */

} PIDINFO;

#define INCL_DOSPROCESS
USHORT rc = DosGetPID(ProcessIDsArea);

PPIDINFO ProcessIDsArea; /* Process IDs (returned) */ USHORT rc; /* return code */ </PRE>

Example

The following example demonstrates how to create a process, obtain process ID information, and kill a
process. Processl invokes process2 to run asynchronously. It obtains and prints some PID
information, and then kills process2. <PRE> /* —- processl.c —- */ #define INCL DOSPROCESS
#include <o0s2.h> #define START PROGRAM “process2.exe” /* Program pointer */

main() {

CHAR ObjFail [50]; /* Object name buffer */
RESULTCODES ReturnCodes; /*

PIDINFO PidInfo;

PID ParentID; /*

USHORT rc;

printf("Processl now running. \n");

/** Start a child process. **/

if(!(DosExecPgm(0ObjFail, /* 0Object name buffer */
sizeof(ObjFail), /* Length of obj. name buffer */
EXEC_ASYNC, /* Execution flag - asynchronous */
NULL, /* No args. to pass to process2*/
NULL, /* Process2 inherits processl's
environment */
&ReturnCodes, /* Ptr. to resultcodes struct. */

START_PROGRAM))) /* Name of program file */
printf("Process2 started. \n");

http://cocorico.osfree.org/doku/ Printed on 2026/02/05 11:05

2026/02/05 11:05 3/3 DosGetPID

/** Obtain Process ID information and print it **/
if(!(rc=DosGetPID(&PidInfo))) /* Process ID's (returned) */
printf("DosGetPID: current process ID is %d; thread ID is %d; parent

process ID is %d.\n",
PidInfo.pid, PidInfo.tid, PidInfo.pidParent);
if(!(rc=DosGetPPID(
ReturnCodes.codeTerminate, /* Process whose parent is wanted */
&ParentID))) /* Address to put parent's PID */
printf("Child process ID is %d; Parent process ID is %d.\n",
ReturnCodes.codeTerminate, ParentID);

/** Terminate process2 **/
if(!(rc=DosKillProcess (DKP PROCESSTREE, /* Action code - kill process
and descendants */

ReturnCodes.codeTerminate))) /* PID of root of process tree
*/
printf("Process2 terminated by processl.\n");

} </PRE> <PRE> /* —- process2.c —- */
#define INCL_DOSPROCESS
#include <0s2.h>

#define SLEEPTIME 500L #define RETURN_CODE 0
main() {
printf("Process2 now running.\n");

/* Sleep to allow processl to kill it */

DosSleep (SLEEPTIME) ; /* Sleep interval */
DosExit (EXIT PROCESS, /* Action Code */
RETURN_CODE) ; /* Result Code */
} </PRE>
Dos16
From:

http://cocorico.osfree.org/doku/ - osFree wiki

Permanent link:
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetpid&rev=1632030507 F.2

Last update: 2021/09/19 05:48

osFree wiki - http://cocorico.osfree.org/doku/

http://cocorico.osfree.org/doku/doku.php?id=category:dos16
http://cocorico.osfree.org/doku/
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetpid&rev=1632030507

	[Syntax]
	[Syntax]
	[Syntax]
	[Syntax]
	Syntax
	Parameters
	Return Code
	Remarks
	Bindings

	MASM
	C
	Example

