2026/02/06 22:00 1/4 DosGetPID

tLDS_E ﬁ This is part of Family API which allow to create dual-os version of program runs under
0S/2 and DOS
Note: This is legacy API call. It is recommended to use 32-bit equivalent

2021/09/17 04:47 - prokushev - 0 Comments
2021/08/20 03:18 - prokushev - 0 Comments

DosGetPID

This call returns the current process ID, thread ID, and the process ID of the parent process.

Syntax

DosGetPID (ProcessIDs

Parameters

e ProcessIDs (PPIDINFO) - output : Address of the structure where the ID information is returned.
o pid (PID) : Current process identifier.
o tid (TID) : Thread (of the current process) identifier.
o pidParent (PID) : Parent process (of the current process) identifier.

Return Code

rc (USHORT) - return:Return code description is:

e 0 NO_ERROR
Remarks

The process ID may be used to generate uniquely named temporary files, or for communication with
signals. For more information on signals, see DosFlagProcess and DosSendSignal.

In the OS/2 environment, thread IDs are used with calls that manipulate threads in the current
process. For more information, see DosSuspendThread, DosResumeThread, DosGetPrty, and
DosSetPrty.

If the application is executing in the OS/2 environment, it is more efficient to obtain these variables by
calling DosGetInfoSeg instead of DosGetPID. However, applications written to the family API cannot
depend on the availability of DosGetInfoSeg.

osFree wiki - http://cocorico.osfree.org/doku/

http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi
http://cocorico.osfree.org/doku/lib/exe/detail.php?id=en%3Adocs%3Afapi%3Adosgetpid&media=logos:os2.gif
http://cocorico.osfree.org/doku/lib/exe/detail.php?id=en%3Adocs%3Afapi%3Adosgetpid&media=logos:dos.gif
http://cocorico.osfree.org/doku/doku.php?id=en:templates:legacy#discussion__section
http://cocorico.osfree.org/doku/doku.php?id=en:templates:fapiint#discussion__section
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dossuspendthread
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosresumethread
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetprty
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dossetprty

Iiéfé;pdate: 2021/10/16 en:docs:fapi:dosgetpid http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetpid&rev=1634393357

To get an ID for a process other than the current process or its parent process, issue DosGetPPID.
Bindings
MASM

PIDINFO struc

pidi pid dw ? ;current process' process ID

pidi tid dw ? ;current process' thread ID

pidi pidParent dw ? ;process ID of the parent
PIDINFO ends

EXTRN DosGetPID:FAR
INCL DOSPROCESS EQU 1

@ OTHER ProcessIDsArea ;Process IDs (returned)
DosGetPID

Returns NONE

typedef struct PIDINFO { /* pidi */

PID pid /* current process' process ID */
TID tid /* current process' thread ID */
PID pidParent /* process ID of the parent */
PIDINFO

#define INCL DOSPROCESS
USHORT rc DosGetPID(ProcessIDsArea

PPIDINFO ProcessIDsArea; /* Process IDs (returned) */
USHORT rc /* return code */

Example

The following example demonstrates how to create a process, obtain process ID information, and kill a
process. Processl invokes process2 to run asynchronously. It obtains and prints some PID
information, and then kills process2.

/* ---- processl.c ---- */

#define INCL DOSPROCESS

#include <0s2.h>

#define START PROGRAM "process2.exe" /* Program pointer */

http://cocorico.osfree.org/doku/ Printed on 2026/02/06 22:00

http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetppid

2026/02/06 22:00

3/4 DosGetPID

main()
{
CHAR ObjFail [507];
RESULTCODES ReturnCodes;
PIDINFO PidInfo,;
PID ParentID;
USHORT rc;
printf("Processl now running.
/** Start a child process. **/
17(! (DosExecPgm(0ObjFail,
sizeof(ObjFail),
EXEC_ASYNC,
NULL,
NULL,
&ReturnCodes,

START PROGRAM)))
printf("Process2 started. \n");

\n");

/*
/*
/*
/*
/*

/*
/*

/* Object name buffer */

Object name buffer */

Length of obj. name buffer */

Execution flag - asynchronous */

No args. to pass to process2*/
Process2 inherits processl's
environment */

Ptr. to resultcodes struct. */

Name of program file */

/** Obtain Process ID information and print it **/

1T (! (rc=DosGetPID(&PidInfo)))

/*

Process ID's (returned) */

printf("DosGetPID: current process ID is %d; thread ID is %d; parent

process ID is %d.\n",

PidInfo.pid, PidInfo.tid, PidInfo.pidParent);

1T (! (rc=DosGetPPID(

ReturnCodes.codeTerminate, /* Process whose parent is wanted */
/* Address to put parent's PID */
printf("Child process ID is %d; Parent process ID is %d.\n",
ParentID) ;

&ParentID)))

ReturnCodes.codeTerminate,

/** Terminate process2 **/

17 (1 {rc=DosKillProcess (DKP_ PROCESSTREE,

ReturnCodes.codeTerminate)))

/* Action code - kill process
and descendants */
/* PID of root of process tree

*/

printf("Process2 terminated by processl.\n");
}
/* ---- process2.c ---- */

#define INCL DOSPROCESS
#include <o0s2.h>

#define SLEEPTIME 500L
#define RETURN_ CODE 0

osFree wiki - http://cocorico.osfree.org/doku/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2021/10/16

14:09 en:docs:fapi:dosgetpid http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetpid&rev=1634393357

main
printf("Process2 now running.\n"

/* Sleep to allow processl to kill it */

DosSleep (SLEEPTIME /* Sleep interval */
DosExit (EXIT PROCESS /* Action Code */

RETURN CODE /* Result Code */
From:

http://cocorico.osfree.org/doku/ - osFree wiki

Permanent link:
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetpid&rev=1634393357 F.2

Last update: 2021/10/16 14:09

http://cocorico.osfree.org/doku/ Printed on 2026/02/06 22:00

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://cocorico.osfree.org/doku/
http://cocorico.osfree.org/doku/doku.php?id=en:docs:fapi:dosgetpid&rev=1634393357

	DosGetPID
	Syntax
	Parameters
	Return Code
	Remarks
	Bindings
	MASM
	C

	Example

